Course Description
The abundance of data and affordable cloud scale has led to an explosion of interest in Deep Learning. Google has released an excellent library called TensorFlow to open-source, allowing state-of-the-art machine learning done at scale, complete with GPU-based acceleration. This course introduces Deep Learning concepts and TensorFlow library to students. Tired of shallow courses that just show code without explaining more? We strive to provide a fundamental understanding of Deep Learning concepts and how TensorFlow implements them.

Learning Objectives
You will learn:
+ Introduction to Machine Learning
+ Deep Learning concepts
+ TensorFlow library
+ Writing TensorFlow applications (CNN, RNN)
+ Using TF tools
+ High level libraries : Keras

Prerequisites
+ Basic knowledge of Python language and Jupyter notebooks is assumed
+ Basic knowledge of Linux environment would be beneficial
+ Some Machine Learning familiarity would be nice, but not necessary

Lab Environment
+ Cloud servers will be provided students for installation, administration, and lab work. Students would need a SSH client and a browser to access the cluster. Most labs will be in jupyter notebook format.

Who Should Attend
+ Developers
+ Data Analysts
+ Data Scientists
Course Content

1. Introduction to Machine Learning
 + Understanding Machine Learning
 + Supervised vs. Unsupervised Learning
 + Regression
 + Classification
 + Clustering

2. Introducing TensorFlow
 + TensorFlow intro
 + TensorFlow Features
 + TensorFlow Versions
 + GPU and TPU scalability
 + Lab: Setting up and Running TensorFlow

3. The Tensor: The Basic Unit of TensorFlow
 + Introducing Tensors
 + TensorFlow Execution Model
 + Lab: Learning about Tensors

4. Single Layer Linear Perceptron Classifier With TensorFlow
 + Introducing Perceptrons
 + Linear Separability and XOR Problem
 + Activation Functions
 + Softmax output
 + Backpropagation, loss functions, and Gradient Descent
 + Lab: Single-Layer Perceptron in TensorFlow

5. Hidden Layers: Intro to Deep Learning
 + Hidden Layers as a solution to XOR problem
 + Distributed Training with TensorFlow
 + Vanishing Gradient Problem and ReLU
 + Loss Functions
 + Lab: Feedforward Neural Network Classifier in TensorFlow

6. High level TensorFlow: tf.learn
 + Using high level TensorFlow
 + Developing a model with tf.learn
 + Lab: Developing a tf.learn model

7. Convolutional Neural Networks in TensorFlow
 + Introducing CNNs
 + CNNs in TensorFlow
 + Lab: CNN apps

8. Introducing Keras
 + What is Keras?
 + Using Keras with a TensorFlow Backend
 + Lab: Example with a Keras

9. Recurrent Neural Networks in TensorFlow
 + Introducing RNNs
 + RNNs in TensorFlow
 + Lab: RNN

10. Long Short Term Memory (LSTM) in TensorFlow
 + Introducing RNNs
 + RNNs in TensorFlow
 + Lab: RNN

11. Conclusion
 + Summarize features and advantages of TensorFlow
 + Summarize Deep Learning and How TensorFlow can help
 + Next steps

To register for an ePlus cloud training course, contact us today.

Call: 888.482.1122
Email: CloudServices@eplus.com
Web: www.eplus.com/cloud